Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing?
نویسندگان
چکیده
BACKGROUND Missing outcomes can seriously impair the ability to make correct inferences from randomized controlled trials (RCTs). Complete case (CC) analysis is commonly used, but it reduces sample size and is perceived to lead to reduced statistical efficiency of estimates while increasing the potential for bias. As multiple imputation (MI) methods preserve sample size, they are generally viewed as the preferred analytical approach. We examined this assumption, comparing the performance of CC and MI methods to determine risk difference (RD) estimates in the presence of missing binary outcomes. We conducted simulation studies of 5000 simulated data sets with 50 imputations of RCTs with one primary follow-up endpoint at different underlying levels of RD (3-25 %) and missing outcomes (5-30 %). RESULTS For missing at random (MAR) or missing completely at random (MCAR) outcomes, CC method estimates generally remained unbiased and achieved precision similar to or better than MI methods, and high statistical coverage. Missing not at random (MNAR) scenarios yielded invalid inferences with both methods. Effect size estimate bias was reduced in MI methods by always including group membership even if this was unrelated to missingness. Surprisingly, under MAR and MCAR conditions in the assessed scenarios, MI offered no statistical advantage over CC methods. CONCLUSION While MI must inherently accompany CC methods for intention-to-treat analyses, these findings endorse CC methods for per protocol risk difference analyses in these conditions. These findings provide an argument for the use of the CC approach to always complement MI analyses, with the usual caveat that the validity of the mechanism for missingness be thoroughly discussed. More importantly, researchers should strive to collect as much data as possible.
منابع مشابه
Dealing with missing outcome data in randomized trials and observational studies.
Although missing outcome data are an important problem in randomized trials and observational studies, methods to address this issue can be difficult to apply. Using simulated data, the authors compared 3 methods to handle missing outcome data: 1) complete case analysis; 2) single imputation; and 3) multiple imputation (all 3 with and without covariate adjustment). Simulated scenarios focused o...
متن کاملMissing binary outcomes under covariate‐dependent missingness in cluster randomised trials
Missing outcomes are a commonly occurring problem for cluster randomised trials, which can lead to biased and inefficient inference if ignored or handled inappropriately. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. In this study, we assessed the performance of unadjusted cluster-level analysis, baseline covariate-adjusted cluster-level anal...
متن کاملImputation strategies for missing binary outcomes in cluster randomized trials
BACKGROUND Attrition, which leads to missing data, is a common problem in cluster randomized trials (CRTs), where groups of patients rather than individuals are randomized. Standard multiple imputation (MI) strategies may not be appropriate to impute missing data from CRTs since they assume independent data. In this paper, under the assumption of missing completely at random and covariate depen...
متن کاملImputation methods for missing outcome data in meta-analysis of clinical trials
BACKGROUND Missing outcome data from randomized trials lead to greater uncertainty and possible bias in estimating the effect of an experimental treatment. An intention-to-treat analysis should take account of all randomized participants even if they have missing observations. PURPOSE To review and develop imputation methods for missing outcome data in meta-analysis of clinical trials with bi...
متن کاملRecovery of information from multiple imputation: a simulation study
UNLABELLED BACKGROUND Multiple imputation is becoming increasingly popular for handling missing data. However, it is often implemented without adequate consideration of whether it offers any advantage over complete case analysis for the research question of interest, or whether potential gains may be offset by bias from a poorly fitting imputation model, particularly as the amount of missing...
متن کامل